德國VSEVS1 0.1/16EP012V32W15/410...28VDC流量計定做同時我們還經(jīng)營:1、渦街流量計的測量范圍較大,一般10:1,但測量下限受許多因素限制:Re>10000是渦街流量計工作的最基本條件,除此以外,它還受旋渦能量的限制,介質(zhì)流速較低,則旋渦的強度、旋轉(zhuǎn)速度也低,難以引起傳感元件產(chǎn)生響應信號,旋渦頻率f也小,還會使信號處理發(fā)生困難。測量上限則受傳感器的頻率響應(如磁敏式一般不超過400Hz)和電路的頻率限制,因此設計時一定要對流速范圍進行計算、核算,根據(jù)流體的流速進行選擇。使用現(xiàn)場環(huán)境條件復雜,選型時除注意環(huán)境溫度、濕度、氣氛等條件外,還要考慮電磁干擾。在強干擾如高壓輸電電站、大型整流所等場合,磁敏式、壓電應力等儀表不能正常工作或不能準確測量。2、振動也是該類儀表的一大勁敵。因此在使用時注意避免機械振動,尤其是管道的橫向振動(垂直于管道軸線又垂直旋渦發(fā)生體軸線的振動),這種影響在流量計結(jié)構(gòu)設計上是無法抑制和消除的。由于渦街信號對流場影響同樣敏感,故直管段長度不能保證穩(wěn)定渦街所必要的流動條件時,是不宜選用的。即使是抗振性較強的電容式、超聲波式,保證流體為充分發(fā)展的單向流,也是不可忽略的。3、介質(zhì)溫度對渦街流量計的使用性能也有很大的影響。如壓力應力式渦街流量計不能長期使用在300℃狀態(tài)下,因其絕緣阻抗會由常溫下的10MΩ~100MΩ急降至1MΩ~10KΩ,輸出信號也變小,導致測量特性惡化,對此宜選用磁敏式或電容式結(jié)構(gòu)。在測量系統(tǒng)中,傳感器與轉(zhuǎn)換器宜采用分離安裝方式,以免長期高溫影響儀表可靠性和使用壽命。渦街流量計是一種比較新型的流量計,處于發(fā)展階段,還不很成熟,如果選擇不當,性能也不能很好發(fā)揮。只有經(jīng)過合理選型、正確安裝后,還需要在使用過程中認真定期維護,不斷積累經(jīng)驗,提高對系統(tǒng)故障的預見性以及判斷、處理問題的能力,從而達到令人滿意的效果。智能電磁流量計離不開良好的顯示界面。我們采用128*64的圖形點陣液晶顯示模塊來顯示累積流量、瞬時流量等數(shù)據(jù)信息。液晶顯示模塊(LCM),是將液晶顯示器件、驅(qū)動及控制電路、以及溫度補償、驅(qū)動電源、背光等輔助電路組合在一起的一種相對獨立的顯示器件和設備。通常液晶顯示器件本身引線眾多,而且要將這些引線與驅(qū)動、控制等電路連接才能用于顯示信息,因此生產(chǎn)廠家在制造液晶顯示器件的同時,也將與之對應的驅(qū)動、控制等電路做成PCB板,然后用壓框和導帶或?qū)щ娤鹉z將液晶顯示器件固定在PCB板上,從而組合形成液晶顯示模塊。圖3.10是我們采用的MSC.G12864DYSY-1W型液晶模塊的外部尺寸圖。 圖3.11MSC.G12864DYSY-1W型液晶模塊的結(jié)構(gòu)圖,由圖中可以看出電磁流量計液晶模塊集成了兩個KS0108B顯示驅(qū)動控制器和一個KS0107B顯示驅(qū)動器,兩個KS0108B分別控制左右兩個半屏(64x64)像素點的顯示,KS0107B作為64行的行驅(qū)動控制。三聚磷酸鈉(俗稱五鈉)的生產(chǎn)過程中有一個中和過程,在該過程中磷酸和純堿按一定比例混合、反應后被制成可用來進一步生產(chǎn)五鈉的中和液。在這樣一一個過程中為使產(chǎn)品質(zhì)量得到有效控制就需要對加入中和罐的磷酸量根據(jù)分析結(jié)果進行精確的批量控制。存在的問題和解決方案 圖1中流量計自1983年裝置投產(chǎn)后就一直使用,到1997年已是殘破不堪,常因其故障使裝置的生產(chǎn)遭受影響。在這種情況下如何來解決好這個問題就很自然地納入了我們的工作日程。我們首先想到的是想按原型號進行更新,但經(jīng)市場詢價后我們發(fā)現(xiàn)這種老式的儀表現(xiàn)在的售價實在太昂貴,竟達十一萬多人民幣一臺,很不合算。經(jīng)研究后,我們認為智能式電磁流量計能擔此任(當時集批處理功能于一身的流量計還不多),其完善的功能和一體式結(jié)構(gòu)既能夠通過表頭上的三個紅外觸摸鍵使將來的操作完全和老儀表一樣在現(xiàn)場完成,也可利用這種儀表本身具有的HART通信功能和RS485接口方便地使用HART通訊器或其它智能終端實現(xiàn)遠程操作。該方案投資僅為三萬元人民幣左右(不計遠程終端,暫未用)。圖1為控制系統(tǒng)圖 2儀表選型和系統(tǒng)設計 (1)根據(jù)工藝的酸流量情況我們選用了口徑為DN50的電磁流量計,針對磷酸的特殊腐蝕特性確定了聚四氟乙烯(PIFE襯里和鉭電極,電源為24VDC(因電磁閥也用該電源)。 (2)調(diào)節(jié)閥延用原舊閥。 (3)增加一個直流24V2.SW的二位三通電磁閥,用來控制調(diào)節(jié)閥的氣源(該氣源在舊系統(tǒng)中直接受控于流量計)。. (4)因所選流量計本身的觸點輸出容量最大僅為0.1A24W故增加一-個觸點容量為0.5A24V激勵電壓為24VDC的中間繼電器(該繼電器直接固定在流量計自身的接線盒內(nèi))用以可靠驅(qū)動電磁閥。系統(tǒng)構(gòu)成示意圖見圖2。超聲波液位計基本要求 超聲波液位計換能器發(fā)射脈沖超聲波時,都有一定的發(fā)射開角。從換能器下沿到被測介質(zhì)表面之間,由發(fā)射是超聲波波束所輻射的區(qū)域內(nèi),盡可能有障礙物,因此安裝時應盡可能避開罐內(nèi)設施,如:人梯、限位開關(guān)、加熱設備、支架等。如果有障礙物干擾情況下,安裝時需要進行"虛假回波存儲"。另外須注意超聲波波束不得與加料料流相交。 安裝儀表時還要注意:最高料位不得進入測量盲區(qū);儀表距罐壁必須保持一定的距離;儀表的安裝盡可能使換能器的發(fā)射方向與液面垂直。安裝在防爆區(qū)域內(nèi)的儀表必須遵守國家防爆危險區(qū)的安裝規(guī)定。本安型的外殼采用鋁殼。本安型儀表可安裝在有防爆要求的場合,儀表必須接地。測量的基準是探頭的下邊沿。1、盲區(qū) 2、空倉(最大測量距離) 3、 最大量程 4、測量范圍注:使用超聲波物位計時,務必保證最高料位不能進入測量盲區(qū)。安裝位置 在安裝超聲波物位計的時候,注意儀表和容器壁至少保持200mm的距離。1、基準面2、容器中央或?qū)ΨQ軸 對于錐形容器,且為平面罐頂,儀表的最佳安裝位置是容器頂部中央,這樣可以保證測量到容器底部。常見安裝位置的正誤1、錯誤:換能器應與被測介質(zhì)表面垂直。2、錯誤:儀表被安裝在拱形或圓形罐頂,會造成多次反射回波,在安裝時應盡可能避免安裝在容器中央。3、正確1、錯誤:不要將儀表安裝于入料料流的上方,以保證測量的是介質(zhì)表面而不是入料料流。2、正確 注意:室外安裝時應采取遮陽、防雨措施。攪拌 當罐中有攪拌時,超聲波液位計安裝盡量遠離攪拌器。安裝后要在攪拌狀態(tài)下進行"虛假回波存儲",以消除攪拌葉片所產(chǎn)生的虛假回波影響。若由于攪拌產(chǎn)生泡沫或翻起波浪,則應使用導波管安裝方式。泡沫 由于入料、攪拌或容器內(nèi)其他過程處理,會在某些液體介質(zhì)表面形成泡沫,衰減發(fā)射信號。如果泡沫造成測量誤差,應將傳感器安裝在導波管內(nèi),或使用雷達液位計。導波雷達液位計的測量不受泡沫的影響,是這種應用的最佳選擇。氣流 如果容器內(nèi)有很強的氣流,例如:室外安裝,而且風很大,或容器內(nèi)有空氣渦流,您應該將傳感器安裝在導波管內(nèi),或使用雷達液位計或?qū)Рɡ走_液位計。為了適應儀表網(wǎng)絡化的發(fā)展方向,在系統(tǒng)設計時我們要根據(jù)實際需要為電磁流量計配備合適的通信接口.在當今單片機系統(tǒng)的通信中,RS232和RS485標準總線應用最為廣泛,技術(shù)也最為成熟.RS232用來連接兩臺計算機(微處理器)之間的串口通信,當我們需要一個更長的距離或者比RS232更快的速度下進行傳輸?shù)臅r候,RS485就是一個很好的解決辦法.另外,RS485連接不限于僅僅連接兩臺設備.根據(jù)距離,比特率和接口芯片,我們可以用單一導線連接最多256個節(jié)點.為了使電磁流量計的應用范圍更加廣泛,我們選用RS485標準總線來實現(xiàn)儀表和外部系統(tǒng)的通信. RS485是雙向、半雙工通信協(xié)議,允許多個驅(qū)動器和接收器掛接在總線上,其中每個驅(qū)動器都能夠脫離總線.該規(guī)范滿足所有RS422的要求,而且比RS422穩(wěn)定性更強.具有更高的接收器輸入阻抗和更寬的共模范圍(-7V至+12V). 接收器輸入靈敏度為士200mV,這就意味著若要識別符號或間隔狀態(tài),接收端電壓必須高于+200mV或低于-200mV.最小接收器輸入阻抗為12k,驅(qū)動器輸出電壓為±1.5V(最小值)、+5V(最大值). 驅(qū)動器能夠驅(qū)動32個單位負載,即允許總線上并聯(lián)32個12k的接收器.對于輸入阻抗更高的接收器,一條總線上允許連接的單位負載數(shù)也較高.RS485接收器可隨意組合,連接至同一總線,但要保證這些電路的實際并聯(lián)阻抗不高于32個單位負載(375). 采用典型的24AWG雙絞線時,驅(qū)動器負載阻抗的最大值為54,即32個單位負載并聯(lián)2個120終端匹配電阻.RS485已經(jīng)成為POS、工業(yè)以及電信應用中的最佳選擇.較寬的共模范圍可實現(xiàn)長電纜、嘈雜環(huán)境(如工廠車間)下的數(shù)據(jù)傳輸.更高的接收器輸入阻抗還允許總線上掛接更多器件. 因RS485接口具有良好的抗噪聲干擾性,長的傳輸距離和多站能力等上述優(yōu)點就使其成為首選的串行接口.因為RS485接口組成的半雙工網(wǎng)絡一般只需二根連線,所以RS485接口均采用屏蔽雙絞線傳輸.RS485接口連接器采用DB-9的9芯插頭座,與智能終端RS485接口采用DB.9(孔),與鍵盤連接的鍵盤接口RS485采用DB.9(針). 通信接口電路如圖3.13所示,我們選用MAX485作為系統(tǒng)的通信接口芯片.MAX485是MAXIM公司推出的支持RS485協(xié)議的低功耗收發(fā)器,它的驅(qū)動器擺率不受限制,可以實現(xiàn)最高2.5Mbps的傳輸速率.它是用于RS.485通信的半雙工低功率收發(fā)器件,包含一個驅(qū)動器和一個接收器,具有輸入接收器和輸出驅(qū)動器使能管腳.使用一個半雙工連接的難點就是控制每個驅(qū)動器在什么時候被啟用,或者處于激活狀態(tài).當一個驅(qū)動器在傳輸?shù)臅r候,必須直到它完成傳輸都保持被啟用狀態(tài),然后在一個應答節(jié)點開始響應之前切換到禁用狀態(tài).MAX485的控制端RE和DE短接,這樣用一個信號可以控制兩種狀態(tài):接收和發(fā)送.RE和DE為“l”時,發(fā)送端接通,數(shù)據(jù)經(jīng)DI腳后,變成傳送的信號送到傳輸線.RE和DE為“0”時傳輸線上的信號經(jīng)MAX485,當處于發(fā)送狀態(tài)時,數(shù)據(jù)信號經(jīng)發(fā)送端DI,在輸出端A和B上交替出現(xiàn)高電平:當處于接收狀態(tài)時,A和B上交替的高電平信號經(jīng)MAX485轉(zhuǎn)換成高低電平信號經(jīng)RO輸出.在電磁流量計傳輸過程中,交替的高電平保證通信傳輸回路中始終有電流,能實現(xiàn)可靠通信.德國VSEVS1 0.1/16EP012V32W15/410...28VDC流量計定做 玻璃轉(zhuǎn)子流量計是通過量測設在直流管道內(nèi)的轉(zhuǎn)動部件的位置來推算流量的儀表甲,主要用于中、小管徑的流量測量,使用范圍廣泛。相比其他類型的流量計,轉(zhuǎn)子流量計可適用于高溫高壓場所,并且具有一定的耐腐蝕能力。 轉(zhuǎn)子流量計按照用途可分為測量型及吹掃型。轉(zhuǎn)子流量計具有結(jié)構(gòu)簡單、直觀、壓力損失小、維修方便等特點。轉(zhuǎn)子流量計適用于測量通過管道公稱通徑D≤150mm的小流量,也可以測量腐蝕性介質(zhì)的流量。 測量型轉(zhuǎn)子流量計主要用于尿素裝置中管道公稱通徑D≤150mm,介質(zhì)為工藝冷凝液、蒸汽冷凝液、脫鹽水、沖洗水等介質(zhì)的小流量測量,大部分的測量型轉(zhuǎn)子流量計主要用于尿液等易結(jié)晶腐蝕.管線沖洗時的測量。 測量型轉(zhuǎn)子使用時流量計必須安裝在垂直走向的管段.上,以使流體介質(zhì)自下而上地通過轉(zhuǎn)子流量計。 吹掃型轉(zhuǎn)子流量計一方面應用于尿素裝置中用于設備氮封,另一方面應用于儀表測量管線的吹掃。例如一段蒸發(fā)冷凝器、二段蒸發(fā)冷凝器的壓力測量,如果采用插入式膜片的結(jié)構(gòu),尿素蒸汽很容易在膜片.上產(chǎn)生結(jié)晶,影響測量結(jié)果,這時就需要采用吹掃轉(zhuǎn)子流量計進行壓力的測量。 吹掃型玻璃轉(zhuǎn)子流量計在安裝時應選擇合適的位置安裝,以確保流量計吹掃裝置的調(diào)整、清洗、拆卸方便,并確保介質(zhì)的流體方向與流量吹掃裝置要求的方向相同。安裝時,針型閥應全部關(guān)閉,在實際測量時為防止浮子的突然加速,上沖撞擊限位器,損壞測量部件,應緩慢地打開針型閥,將壓力調(diào)整到工作壓力。 渦街流量計是基于流體力學中著名的“卡門渦街”研制的。在流動的流體中放置- -非流線型柱形體,稱旋渦發(fā)生體,當流體沿旋渦發(fā)生體繞流時,會在渦街發(fā)生體下游產(chǎn)生兩列不對稱但有規(guī)律的交替旋渦列,這就是所謂的卡門渦街,如圖1所示。 大量的實驗和理論證明:穩(wěn)定的渦街發(fā)生頻率ƒ與來流速度v1及旋渦發(fā)生體的特征寬度d有如下確定關(guān)系叫: 式中St為斯特羅哈數(shù),與雷諾數(shù)和d相關(guān)。 當雷諾數(shù)Re在一定范圍內(nèi)(3 X102~2 X105)時(4],St為一常數(shù),對于三角柱形旋渦發(fā)生體約為0.16 雷諾數(shù)的定義為 式中S為管道的橫截面積。 由高精度氣體渦街流量計的測量原理可知,通過測量旋渦發(fā)生頻率僅能得到旋渦發(fā)生體附近的流速vI,由式(3)可知在橫截面積一定的情況下,流體的流量Q與流體的平均流速v成正比,因此要精確計量流體的流量必須找到`v與v1的對應關(guān)系。 根據(jù)流體力學理論,在充分發(fā)展的湍流狀態(tài)下,流體的速度分布有如下關(guān)系式川: 式中:vp為到管壁距離為y的P點的速度;y為點到管壁處的距離;Vmax:為管道中的最大流速,通常取管道中心的速度;R為管道的半徑;n為雷諾數(shù)的函數(shù)。 表1中給出了部分雷諾數(shù)與n的對應關(guān)系。 由于旋渦發(fā)生體的位置固定,因此當雷諾數(shù)一定時v1與`v有固定的比例關(guān)系換言之,當雷諾數(shù)Re變化時,二者的比值也發(fā)生變化, 圖3給出了不同雷諾數(shù)下充分發(fā)展的湍流的流速分布,如圖所示Re越大,流速分布越平滑,即旋渦發(fā)生體附近的流速越接近平均流速,故ƒ( Re)應為單調(diào)遞減函數(shù)。圖4給出了3臺50mm口徑,寬度14 mm三角形旋渦發(fā)生體的氣體渦銜流量計,在20℃,一個標準大氣壓下,不同雷諾數(shù)下的K值曲線。如圖所示實驗數(shù)據(jù)與理論分析基本一致,因此渦銜流量計的測量原理即決定了儀表系數(shù)的非線性特性。若要提高渦街流量計的計量精度,必須針對不同的流速分布對K值進行修正。德國VSEVS1 0.1/16EP012V32W15/410...28VDC流量計定做當前熱式氣體質(zhì)量流量計大部分用于測量氣體,只有少量用于測量微小液體流量。熱式質(zhì)量流量計具有性能可靠、無可動部件、安裝方便,壓損小、量程比寬(可達1000:1)、靈敏度高等特點2,特別適用于大管徑、低流速,非圓截面管道、現(xiàn)場空間狹窄處測量等特殊工況,在環(huán)境保護和過程工業(yè)的應用發(fā)展迅速,例如:污水處理過程中發(fā)生的氣體,燃料電池工廠各種氣體的流量測量及煤粉燃燒過程粉/氣配比控制等。 與常用的孔板流量計、渦街流量計和差壓式均速管、文丘里流量計相比較,熱式氣體質(zhì)量流量計有如下特點:(1)直接測量流體的質(zhì)量流量或標準狀態(tài)下的體積流量,不需要進行溫度壓力補償;.(2)一次元件結(jié)構(gòu)簡單,采用不銹鋼或特種合金外殼覆蓋,不怕臟污或腐蝕,不存在堵塞問題,且表面臟污極易清除。帶不斷流裝拆裝置,可實現(xiàn)不停氣裝拆,清洗維修,簡便易行;(3)量程比特大,可達1000:1,可測流速范圍0.1m/s~60m/s,完全覆蓋-般工業(yè)廢氣及煤氣廠輸出總管中的流速范圍。因而只需在總管上裝一臺插入式熱式氣體質(zhì)量流量計,就可滿足計量要求。大大地節(jié)省了投資,簡化了系統(tǒng)結(jié)構(gòu),方便了管理,提高了系統(tǒng)工作的可靠性;(4)儀表精確度高(士1.5%FS),性能穩(wěn)定(重復性士0.25%FS),幾無壓力損失,對管道振動不敏感。此外,熱式氣體質(zhì)量流量計靈敏度高,尤其適合于大管徑、低流速的流量測量。且在大管徑中使用,其性能價格比更顯優(yōu)勢;防爆、防護、抗腐蝕設計,又使它能適應惡劣工況,危險場合。 熱式氣體質(zhì)量流量計作為一種插入式流量計,由.上述插入式流量計的測量公式可見該流量計同樣方便適用于方形管道的氣體流量測量。環(huán)保管道一般用圓形,而空調(diào)的管道很多地方為方形。孔板等很多儀表沒有測量方形管道的數(shù)據(jù),若使用插入式熱式氣體質(zhì)量流量計,不論圓形或是方形管道均可通過計算獲得,這也解決了低壓方形通風管道的流量測量問題。超聲波流量計根據(jù)聲道布置形式可以分為單聲道超聲波流量計和多聲道超聲波流量計。單聲道超聲波流量計在測量管道上只安裝一對超聲波換能器,多聲道超聲波流量計則在測量管道上安裝多對超聲波換能器,包含多個獨立的超聲波傳播路徑。多聲道超聲波流量計對于流場的適應能力更強,可以提高流量計的測量精度;然而單聲道超聲波流量計在小管徑場合應用更為廣泛,而且通過反射鏡的應用單聲道超聲波流量計的聲道布置形式越來越復雜,測量精度也隨之提高。根據(jù)聲道的傳播方式,常用的單聲道超聲波流量計主要有Z型流量計,U型流量計,V型流量計,N型流量計和三角型流量計,不同傳播類型的單聲道超聲波流量計聲道示意圖如圖4-1所示,其中紅色虛線表示聲波傳播路徑。 多聲道超聲波流量計采用數(shù)值積分的方法提高流量修正系數(shù)的精度,可以解決單聲道超聲波流量計測量不確定度誤差大的問題。多聲道超聲波流量計通常采用Gauss積分方法計算式(2-7)中各聲道位置ri/R和相應的權(quán)重系數(shù)wi。在相同采樣點數(shù)、節(jié)數(shù)自由的情況下,Gauss 型數(shù)值積分方法相對于辛普森公式和梯形公式等插值型積分方法計算精度更高。對于圓形測量管道的超聲波流量計中聲道位置和相應權(quán)重系數(shù)的計算一般采用Gauss-Jacobi積分方法。按照 Gauss-Jacobi 積分方法的零點確定各聲道高度,按積分方法中的權(quán)重系數(shù)計算聲道權(quán)重系數(shù)。 實際中各聲道上速度分布與理想的代數(shù)多項式表示的流速分布差異很大,特別是無法體現(xiàn)管壁處流速為零的特性,導致流量的積分結(jié)果偏高,影響流量計的測量精度。為了使計算結(jié)果更加接近于圓形管道內(nèi)液體充分發(fā)展的真實值,提出了采用最佳圓截面算法(OWICS)計算聲道位置ri/R和權(quán)重系數(shù)wi的方法,最佳圓截面算法其實是基于正交多項式的 Gauss 積分方法。Gauss-Jacobi和OWICS積分方法計算各聲道位置和權(quán)重系數(shù)如表4-1所示.
您如果需要德國VSEVS1 0.1/16EP012V32W15/410...28VDC流量計定做的產(chǎn)品,請點擊右側(cè)的聯(lián)系方式聯(lián)系我們,期待您的來電